StreamQL: A Query Language for Efficient Data Stream Processing

Lingkun Kong, Konstantinos Mamouras
Rice University

Motivation

- **Big-data era:** IoT applications such as predictive maintenance collect, process and analyze a massive amount of data in real-time.

- The setting of data stream processing
 - unbounded source of data
 - real-time, very high rate
 - complex patterns

- Low-level stream processing using general-purpose programming language is cumbersome, error-prone, and not modular.

Our Approach

- **StreamQL** (Streaming Query Language) simplifies the task of specifying complex streaming computations.
 - Stream processing is a procedure that transforms the input stream to the output stream.

- **Contributions:**
 - economical (only half size of RxJava)
 - proved to be expressive and correct.
 - better throughput performance in practice in comparison to other state-of-the-art approaches.
 - signal processing and machine learning toolbox.

State of the Art

- Relational Dataflow
 - map, filter, emit, aggr, groupBy, window
 - compose, parallel, take, skip, search, seq, iterate

Case Studies

- **Predictive maintenance:**
 - Rolling Bearing Fault Prediction
 - Battery Aging

- **Healthcare Monitoring:**
 - Cardiac Signal analysis
 - Arterial Blood Pressure monitoring
 - Walking motion detection

- **High-frequency Market Analysis:**
 - Trading direction analysis

Experiments

- The Java implementation of StreamQL is evaluated with RxJava and Siddhi in one micro benchmark and four benchmarks with realistic workloads.
 - **Micro Benchmark:** For basic stream computations, StreamQL is 1.1-100 times faster than RxJava and 2-100 times faster than Siddhi.
 - **Realistic Workloads:** For computations involving complex streaming aggregation and pattern detection, StreamQL is on average 5 times faster than RxJava and 40 times faster than Siddhi.